11C-L-methyl methionine dynamic PET/CT of skeletal muscle: response to protein supplementation compared to L-[ring 13C6] phenylalanine infusion with serial muscle biopsy
نویسندگان
چکیده
OBJECTIVE The objective of this study was to determine if clinical dynamic PET/CT imaging with 11C-L-methyl-methionine (11C-MET) in healthy older women can provide an estimate of tissue-level post-absorptive and post-prandial skeletal muscle protein synthesis that is consistent with the more traditional method of calculating fractional synthesis rate (FSR) of muscle protein synthesis from skeletal muscle biopsies obtained during an infusion of L-[ring 13C6] phenylalanine (13C6-Phe). METHODS Healthy older women (73 ± 5 years) completed both dynamic PET/CT imaging with 11C-MET and a stable isotope infusion of 13C6-Phe with biopsies to measure the skeletal muscle protein synthetic response to 25 g of a whey protein supplement. Graphical estimation of the Patlak coefficient Ki from analysis of the dynamic PET/CT images was employed as a measure of incorporation of 11 C-MET in the mid-thigh muscle bundle. RESULTS Post-prandial values [mean ± standard error of the mean (SEM)] were higher than post-absorptive values for both Ki (0.0095 ± 0.001 vs. 0.00785 ± 0.001 min-1, p < 0.05) and FSR (0.083 ± 0.008 vs. 0.049 ± 0.006%/h, p < 0.001) in response to the whey protein supplement. The percent increase in Ki and FSR in response to the whey protein supplement was significantly correlated (r = 0.79, p = 0.015). CONCLUSIONS Dynamic PET/CT imaging with 11C-MET provides an estimate of the post-prandial anabolic response that is consistent with a traditional, invasive stable isotope, and muscle biopsy approach. These results support the potential future use of 11C-MET imaging as a non-invasive method for assessing conditions affecting skeletal muscle protein synthesis.
منابع مشابه
Muscle protein synthesis by positron-emission tomography with L-[methyl-11C]methionine in adult humans.
Existing methods for assessing protein synthetic rates (PSRs) in human skeletal muscle are invasive and do not readily provide information about individual muscle groups. Recent studies in canine skeletal muscle yielded PSRs similar to results of simultaneous stable isotope measurements using L-[1-13C, methyl-2H3]methionine, suggesting that positron-emission tomography (PET) with L-[methyl-11C]...
متن کاملDiagnosis of Brain Tumors Using Amino Acid Transport PET Imaging With 18F- Fluciclovine: A Comparison Study With L-Methyl-11C-Methionine PET Imaging
Objective(s): 18F-fluciclovine (trans-1-amino-3-[18F] fluorocyclobutanecarboxylic acid, [FACBC]) is an artificial amino acid radiotracer used for positron emission tomography (PET) studies, which is metabolically stable in vivo and has a long half-life. It has already been shown that FACBC-PET is useful for glioma imaging. However, there have been no reports evaluating the efficiency of FACBC-P...
متن کاملRelationship between the uptake of 18F-borono-L-phenylalanine and L-[methyl-11C] methionine in head and neck tumors and normal organs
BACKGROUND AND PURPOSE The purpose of this study was to determine the distribution of 4-borono-2-18F-fluoro-phenylalanine (18F-BPA) and L-[methyl-11C] methionine (11C-Met) in normal organs and tumors and to evaluate the usefulness of 11C-Met/PET in screening potential candidates for boron neutron capture therapy (BNCT). MATERIAL METHODS Seven patients who had at least one histologically confi...
متن کاملSolitary Psoas Muscle Metastasis of Gastroesphageal Junction Adenocarcinoma
Metastasis of gastroesphageal junction (GEJ) adenocarcinoma in skeletal muscle is rare and primary sites for skeletal muscle metastases are usually lung, renal and colorectal cancer. We have encountered with the first case report of solitary psoas muscle metastasis of GEJ adenocarcinoma. Here we describe a 65 years old man was diagnosed with GEJ adenocarcinoma in tertiary hospital, Tehran, Iran...
متن کاملDietary Methyl Donors Contribute to Whole-Body Protein Turnover and Protein Synthesis in Skeletal Muscle and the Jejunum in Neonatal Piglets.
BACKGROUND The neonatal methionine requirement must consider not only the high demand for rapid tissue protein expansion but also the demands as the precursor for a suite of critical transmethylation reactions. However, methionine metabolism is inherently complex because upon transferring its methyl group during transmethylation, methionine can be reformed by the dietary methyl donors choline (...
متن کامل